
Logistic Regression
With an intro to sigmoid, softmax, and cross-entropy

Richard Corrado

Fat Cat Machine Learning

github.com/richcorrado

http://richcorrado.github.io
https://github.com/richcorrado

Goals

I Apply neural networks to study the MNIST digit
classification problem.

I Use TensorFlow to accomplish this: requires low-level
definitions of the models we will use.

I NNs use linear models to link layers and to output.

I Need to understand how to implement multiclass
classification via linear models at a fairly low-level.

I Understand how to map linear output to class labels:
sigmoid and softmax functions

I Understand appropriate cost function: cross-entropy

2

Ordinary Linear Regression

Design or Feature Matrix:

X =

← feature index →

↑
example
index
↓

Response (Vector):

y =

↑

example
index
↓

We assume that y takes continuous values.

3

Linear Parameters:

weights : W =

↑

feature
index
↓

bias : b =

↑ b

example
...

index
...

↓ b

Then the output of a linear model

ŷ(X,W, b) = XW + b

is a vector of dimension (# of examples).

4

Maximum Likelihood Estimate

If y is a continuous response, it makes sense to assume that
the errors between the true and predicted values

ε = y − ŷ

are normally distributed, then conditional probability of
reproducing y from the model is

p(y|X) = N (y; ŷ, σ2),

N (y; ŷ, σ2) =
1

(2πσ2)n/2
exp

(
− 1

2σ2
|y − ŷ|2

)
.

We want to maximize the probability of obtaining predictions
that have a small error compared to the true values.

5

View X as fixed, then p(y|X) = L(W, b|X, y) is the likelihood
function for the parameters → find W,b that maximize.

The natural logarithm is monotonically increasing, so
equivalently maximize

ln L(W, b|X, y) = − 1

2σ2
|y − ŷ|2 − ln

√
2πσ2,

or minimize the cost function:

J(W, b) = |y − ŷ|2,

by choosing appropriate parameters W,b. We recognize J as
the residual sum of squares.

6

Gradient Descent

Cost function is minimized when

∇WJ(W, b) = ∇bJ(W, b) = 0.

Since

J(W, b) = Tr(XW + b− y)(XW + b− y)T ,

∇WJ(W, b) = 2(XW + b− y)TX.

This is a vector of dimension(# of features).

7

Consider the shift

W′ = W − ε(XW + b− y)TX,

where ε > 0. Then we can show that

J(W′, b) = J(W, b)−2εTr(XW+b−y)X(XW+b−y)TX+O(ε2).

Therefore, for small enough ε, we have J(W′, b) < J(W, b),
i.e., we have reduced the cost function by this change of
parameters.

Gradient descent algorithm:

while J(W, b) > δ: # tolerance parameter δ > 0
W = W − ε(XW + b− y)TX

ε is usually called the learning rate.

8

For the linear model, the cost function is convex:

This implies that gradient descent will converge in a
neighborhood of the true global minimum for appropriately
small ε, δ.

For general optimization problems, gradient descent is not
guaranteed to converge, or if it does, it might find a local
minimum.

9

Binary Response

If the response y is not continuous, but discrete, the previous
analysis based on Normal distribution of errors is invalid.
Suppose that we have a binary response, taking values
y = 0, 1. Now we need to specify p(y = 1|X), since

p(y = 1|X) + p(y = 0|X) = 1.

Problem: find φ(z) so that:

p(y = 1|X) = φ(z), z = XW + b,

subject to 0 < φ(z) < 1, while −∞ < z <∞.

10

Have:
−∞ < z <∞,

0 < φ(z) < 1.

Note that
−∞ < lnφ(z) < 0,

0 < − ln(1− φ(z)) <∞,

and so
−∞ < lnφ(z)− ln(1− φ(z)) <∞.

Then

ln

(
φ(z)

1− φ(z)

)
= z ,

φ(z) =
ez

1 + ez

is a reasonable choice. This is the sigmoid function.

11

Sigmoid or Logistic Function

φ(z) =
ez

1 + ez

I Rapidly changing near decision boundary z = 0.

I Well-behaved derivatives for gradient descent.

12

Bernoulli Distribution

p(y = 1|X) = φ(z) =
ez

1 + ez
,

p(y = 0|X) = 1− φ(z) =
1

1 + ez
,

p(y |X) = φ(z)y (1− φ(z))1−y =
eyz∑1

y ′=0 e
y ′z
.

I qy=1 = φ(z) is model probability to find y = 1.

I qy=0 = 1− φ(z) is model probability to find y = 0.

I py=1 = y is true probability that y = 1.

I py=0 = 1− y is is true probability that y = 0.

13

Cost Function

As before, applying the maximum likelihood principal to
p(y |X) leads to minimizing the cost function

J(one example) =− ln p(y |X)

=− y lnφ(z)− (1− y) ln(1− φ(z))

=− py=1 ln qy=1 − py=0 ln qy=0

=−
1∑

y=0

p(y) ln q(x)

=Ep [− ln q] .

This expectation value is called the cross-entropy between
the model distribution q(y) and the true distribution p(y).

14

Multiclass Classification

Suppose now we have C classes, which is equivalent to
y = 0, 1, . . . ,C − 1.

One vs. All Scheme:
For each class c , have a binary classification between y = c
and y 6= c .

One Hot Encoding:
Replace class labels with vector representation:

0→(1, 0, . . . , 0)

1→(0, 1, . . . , 0)

...

C − 1→(0, 0, . . . , 0, 1).

15

Scikit-Learn LabelBinarizer

16

Argmax Function

Note: Class label maps to index of nonzero element of class
vector.

Map back to class labels:

17

New Linear Model

weights : W =

← class index →

↑
feature
index
↓

bias : b =

← class index →

↑ b · · · · · · b

example
...

...

index
...

...
↓ b · · · · · · b

z(X,W, b) = XW + b

is an array of dimension (# of examples) × (# of classes).

18

Class Probabilities

Convert z to class probabilities with softmax function:

softmax(z)c =
exp(zc)∑
a exp(za)

,

softmax(z) =
1∑
a e

za

(
ez0 , ez1 , . . . , ezC−1

)
.

I Each element is in [0, 1].

I Sum over elements = 1

I Maximum value of exp(zc) determines the most probable
class → can find it with numpy.argmax.

19

Cost Function

the new cost function is sometimes called the softmax
cross-entropy

J(example i) =
C∑
i=c

yic ln softmax(z)ic ,

I yic = 1 iff example i is in class c .

I softmax(z)ic is the model probability that the example i is
in class c .

20

Scikit-Learn LogisticRegression

21

Review

I We’ve learned the necessary ingredients to use the output
of a neural network to do multiclass classification at a
low-level.

I This will be useful when we apply TensorFlow to build
neural networks for, e.g., the MNIST digit problem.

I We’ve learned the role of the sigmoid, softmax and
cross-entropy cost function in multiclass classification.

I We’ve seen some tools from numpy and scikit-learn that
help us with one hot encoding and one vs. all
classification schemes.

22

