Logistic Regression

With an intro to sigmoid, softmax, and cross-entropy

Richard Corrado

Fat Cat Machine Learning

github.com/richcorrado

http://richcorrado.github.io
https://github.com/richcorrado

Goals

Apply neural networks to study the MNIST digit
classification problem.

Use TensorFlow to accomplish this: requires low-level
definitions of the models we will use.

NNs use linear models to link layers and to output.

Need to understand how to implement multiclass
classification via linear models at a fairly low-level.

Understand how to map linear output to class labels:
sigmoid and softmax functions

Understand appropriate cost function: cross-entropy

Ordinary Linear Regression

Design or Feature Matrix:
< feature index —

/]\
example
~ index
1
Response (Vector):
T
_ example

"~ index
!

We assume that y takes continuous values.

Linear Parameters:

feature
index

{

weights : W =

T b
bias: b= example
index

i} b
Then the output of a linear model

§(X, W, b) = XW + b

is a vector of dimension (# of examples).

Maximum Likelihood Estimate

If y is a continuous response, it makes sense to assume that
the errors between the true and predicted values

e=y—y

are normally distributed, then conditional probability of
reproducing y from the model is

p(y|X) = N(y:§,0%),

N 1 1 .
N(y:§y,0%) = Wexp (_F’y - Y|2) :

We want to maximize the probability of obtaining predictions
that have a small error compared to the true values.

View X as fixed, then p(y|X) = L(W, b|X,y) is the likelihood
function for the parameters — find W, b that maximize.

The natural logarithm is monotonically increasing, so
equivalently maximize

1 —
In L(W> b‘xay) = _ﬁ|y_9|2_|n 27(02,
o
or minimize the cost function:
J(W, b) = |y —§I%,

by choosing appropriate parameters W, b. We recognize J as
the residual sum of squares.

Gradient Descent

Cost function is minimized when
VwJ(W, b) = V,J(W, b) =0.
Since
J(W, b) =Tr(XW +b — y)(XW + b —y)",

VwJ(W, b) = 2(XW + b —y)"X.

This is a vector of dimension(# of features).

Consider the shift
W =W — ¢(XW +b —y)"X,
where € > 0. Then we can show that
J(W', b) = J(W, b)—2Tr(XW-+b—y)X(XW+b—y) " X+O(€?).

Therefore, for small enough €, we have J(W', b) < J(W, b),
i.e., we have reduced the cost function by this change of
parameters.

Gradient descent algorithm:

while J(W,b) > §: # tolerance parameter § > 0
W =W — ¢(XW + b —y)TX

e is usually called the learning rate.

For the linear model, the cost function is convex:
J(W)

w

ry try (1=

This implies that gradient descent will converge in a
neighborhood of the true global minimum for appropriately
small €, 9.

For general optimization problems, gradient descent is not
guaranteed to converge, or if it does, it might find a local
minimum.

Binary Response

If the response y is not continuous, but discrete, the previous
analysis based on Normal distribution of errors is invalid.
Suppose that we have a binary response, taking values

y =0,1. Now we need to specify p(y = 1|X), since

ply = 1|X) + p(y = 0[X) = L.
Problem: find ¢(z) so that:
ply = 11X) = 9(2). z = XW + b,

subject to 0 < ¢(z) < 1, while —o0 < z < 0.

10

Have:
—00 < 2z < 0,

0<¢(z) <1
Note that
—o00 < In¢(z) < 0,
0 < —In(1-9¢(z2)) < oo,
and so
—00 < In¢(z) — In(1 — ¢(z)) < 0.
Then

" <1 i“ziz)) -7

o(z) = —=

e
14 e?

is a reasonable choice. This is the sigmoid function.

11

Sigmoid or Logistic Function

» Rapidly changing near decision boundary z = 0.
» Well-behaved derivatives for gradient descent.

12

Bernoulli Distribution

ply = 11X) = 6(2) = .
1
ply =0X) =1 - 6(z) = ;.

PUYIX) = 0l2) (1 = (2 =

» gy—1 = ¢(z) is model probability to find y = 1.

» gy—0 = 1 — ¢(z) is model probability to find y = 0.
» py—1 = y is true probability that y = 1.

» py—o = 1 — y is is true probability that y = 0.

13

Cost Function

As before, applying the maximum likelihood principal to
p(y|X) leads to minimizing the cost function

J(one example) = — In p(y|X)
—yIng(z) = (1 - y)In(1l - ¢(2))

= - py—l In Gy=1 — Py=0 In qy=0

Z—Zp)Inq(x

=E, [— Ingq].

This expectation value is called the cross-entropy between
the model distribution g(y) and the true distribution p(y).

14

Multiclass Classification

Suppose now we have C classes, which is equivalent to
y=01...,C—1

One vs. All Scheme:
For each class ¢, have a binary classification between y = ¢
and y # c.

One Hot Encoding:
Replace class labels with vector representation:

0 —(1,0,...,0)
1-(0,1,...,0)

C —-1—(0,0,...,0,1).

15

Scikit-Learn LabelBinarizer

import pandas as pd

from sklearn.preprocessing import LabelBinarizer
from sklearn.datasets import load iris

1b = LabelBinarizer()
iris data = load iris()
1b.fit(iris data.target)

label vecs = lb.transform(iris data.target)
labels df = pd.DataFrame(label vecs,

labels | _df['label'] = iris data. target
't 0,

labels df = labels df[[’ label’,
labels df.sample(n=5)

label {c_ 0|c_1|c_2
41 (0 1 0 0
2 0 1 0 0
88 (1 0 1 0
70 (1 0 1 0
1312 0 0 1

columns = ['c @',

16

Argmax Function

Note: Class label maps to index of nonzero element of class
vector.

numpy.argmax

numpy.argmax(a, axis=None, out=None)

Returns the indices of the maximum wvalues zalong an axis.

Parameters: a:array_like
Input array.
axis : int, optional
By default, the index is into the flatte

Map back to class labels:

print("np.argmax([1,0,0])
print("np.argmax([0,1,0])
print("np.argmax([0,8,1])

%d" % np.argmax([1,0,0]})
%d" % np.argmax([0,1,0]})
%d" % np.argmax([0,0,1]})

np.argmax([1,8,0])
np.argmax([@,1,0])
np.argmax([@,0,1])

Inn
S =]

17

New Linear Model
< class index —

/l\
. feature
weights : W = {dex
4
< class index —
1 b .- b
bias: b= example
index : :
1 b ... b

z(X, W, b) = XW + b

is an array of dimension (# of examples) x (# of classes).

18

Class Probabilities

Convert z to class probabilities with softmax function:

exp(zc)
softmax(z) = —=———,
®)e = 5 expl(z2)
softmax(z) = ! (eZO e, ... eZH).
za eza b b)

» Each element is in [0, 1].
» Sum over elements = 1

» Maximum value of exp(z.) determines the most probable
class — can find it with numpy . argmax.

19

Cost Function

the new cost function is sometimes called the softmax
cross-entropy

c
J(example i) = Zy,-c In softmax(z);c,

i=c
» v, = 1 iff example i is in class c.

» softmax(z), is the model probability that the example i is
in class c.

20

Scikit-Learn LogisticRegression

import pandas as pd

from sklearn.linear model import LogisticRegression

from sklearn.datasets import load iris

log clf = LogisticRegression(penalty='12", n_jobs=-1)

iris data = load iris()

log clf.fit(iris data.data, iris data.target)

proba = log clf.predict proba(iris data.data)

pred = log clf.predict(iris data.data)

proba df = pd.DataFrame(proba, columns = ['p ©', 'p 1', 'p 2'])
proba df['argmax(p i)'] = proba df.idxmax(axis=1).str.strip('p ")
proba df['y pred'] = pred

proba df['y true'] = iris data.target

proba df.sample(n=5)

p_0 p_1 p_2 argmax(p_i) |y_pred | y_true
129|0.000678|0.510705 | 0.488616 |1 1 2
28 |0.860034|0.139955|0.000010 (0 0 0
78 |0.013350|0.563206 | 0.423444 (1 1 1
102|0.000278 | 0.330535|0.669186 |2 2 2
59 |0.033049|0.528709 |0.438242 |1 1 1

Review

v

We've learned the necessary ingredients to use the output
of a neural network to do multiclass classification at a
low-level.

This will be useful when we apply TensorFlow to build
neural networks for, e.g., the MNIST digit problem.
We've learned the role of the sigmoid, softmax and
cross-entropy cost function in multiclass classification.
We've seen some tools from numpy and scikit-learn that

help us with one hot encoding and one vs. all
classification schemes.

22

